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Abstract. We give an explicit construction of theSU3 coherent states for an arbitrary
irreducible representation. We also construct the symplectic structure on the manifold of coherent
states, find canonical variables and discuss various classical limits of quantum-mechanical
systems with relevant observables that obeysu3 commutation relations.

1. Introduction

Coherent states [1], which originated from the early paper of Schrödinger [2] were always
thought of as providing a possible link between quantum and classical mechanics. In works
of Glauber [3], Klauder [4] and Sudarshan [5] the coherent states of the Heisenberg–Weyl
group were constructed as eigenstates of the annihilation operator and applied to study
properties (such as, for example, coherence) of the quantized electromagnetic radiation. In
fact, in this case, one can characterize the coherent states in three equivalent ways: (i) as
the eigenstates of the annihilation operator; (ii) as the states minimizing the Heisenberg
uncertainty relations and (iii) as the states obtained by acting on the vacuum state by
Heisenberg–Weyl group operators. As was observed by Perelomov [6] the third definition
can be extended to an arbitrary Lie group. In fact, for the groupSU2 the corresponding
coherent states were described earlier by Radcliffe [7], and soon applied to the problems
of atomic physics [8, 9], where theSU2 group is a natural symmetry group of a system
consisting of two-level atoms.

The usefulness of the Perelomov generalized coherent states to the analysis of the
classical limit of quantum systems was shown by Yaffe [10]. He considered a very common
situation in which a quantum system involves a large number of degrees of freedomN (e.g.
consists ofN atoms). Often it is possible to define physical quantities (e.g. energy or
polarization per one atom) which have finite values in the limitN → ∞. Moreover, the
corresponding quantum observables become ‘classical’ (e.g. in the sense of the uncertainty
relations—their mutual commutators formally approach zero) and their dynamical behaviour
is governed by classical equations of motion. The classical phase space in which this motion
takes place is constructed with the help of appropriate coherent states.

In our paper we want to present explicitly this construction for the case of theSU3

group. The physical motivation is provided, as mentioned above, by problems of many-
atom systems. If only three levels of each atom are of importance (e.g. due to a resonant
interaction with light) thenSU3 is the natural symmetry of the system and the number of
atomsN is connected to dimensions of representations ofSU3 which are relevant to the

0305-4470/98/499871+26$19.50c© 1998 IOP Publishing Ltd 9871



9872 S Gnutzmann and M Ku´s

problem. This observation was extensively used in the analysis of the so-called superradiant
laser [11]. The analogous construction, as well as a lot of useful relations fulfilled by
the coherent states in the case of theSU2 group are well known (see the above cited
papers of Radcliffe, Arecchiet al and Glauber and Haake). TheSU3 group is much richer
than SU2—its irreducible representations are parametrized by two numbers (in contrast
to SU2 where the total spin uniquely characterizes each representation). In the case of
SU2 the dimension of representation is proportional to the total spin which, in the case of
systems of two-level atoms, corresponds to the number of atomsN . There is only one
way of attaining the classical limitN → ∞ corresponding to increasing to infinity the
dimensionality of representations. In the case ofSU3 the same limit (the number of atoms
N tends to infinity) may be realized in different ways in terms of representations. In fact,
the actual limit may depend, for example, on our assumptions about the initial preparation
of the quantum states of the system and can lead to different properties of the classical
limiting dynamics. For the superradiant laser this situation was analysed thoroughly in
[11].

There is also another interesting aspect of the above-mentioned ambiguity in the
definition of the classical limit for the quantum systems with theSU3 symmetry. It is
believed that some spectral properties of quantum systems are determined by their classical
behaviour [12]. The statistical distributions of energy levels are different for systems which
are classically chaotic and integrable. The problem becomes interesting if we realize that
in the case ofSU3 we can construct two different classical dynamics from one quantum
Hamiltonian—we will elaborate the topic elsewhere [13].

Despite the fact that the general construction of the coherent states for theSU3 (and, in
fact, SUN [14–17]) group is known, we were not able to find in the available literature the
explicit construction of the classical phase space, canonical variables, etc. The same applies
to, closely connected, explicit formulae for the expectation values of various generators of
SU3 in the coherent state representation—usually the authors concentrate on one type of
representation only.

This paper is organized as follows. In section 2 we describe briefly some relevant
facts concerning the groupSU3 and its representations, in section 3 we give the definition
and discuss various properties of theSU3 coherent states. It is this section which contains
formulae useful in quantum-mechanical calculations concerning expectation values. The
last subsection of section 3 recalls the geometric meaning of the coherent states. Section 4
is devoted to the natural symplectic structure of the manifold of the coherent states and
its usefulness in defining the classical limit of quantum systems withSU3 symmetry. In
particular, in section 4.2 we give explicitly a coordinate form of the Poisson brackets
(as well as of the symplectic form). The canonical coordinates are given explicitly in
section 4.4.

2. The Lie groupsSU3 and SL3(C)

2.1. Definition ofSU3 andSL3(C)

The Lie groupSU3 is defined as the set of unitary 3× 3 matrices with determinant
equal to one and with matrix multiplication as the group operation. It is embedded in its
complexificationSL3(C), the group of arbitrary complex 3× 3 matrices with determinant
equal to one. Physically one may think ofSU3 as the set of all basis transformations of
a three-level system (regarding two bases as equal if they differ by a global phase factor).
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Any group element ofSU3 andSL3(C) acts as an automorphism inC3 with its standard
basis

|1〉 =
1

0
0

 |2〉 =
0

1
0

 |3〉 =
0

0
1

 . (2.1)

In quantum mechanics these basis vectors may correspond to the energy levels of a three-
level atom (or any other three-level system). Ifg, h, f ∈ G (G = SU3 or SL3(C)) with
f = g ◦ h then a representation of the Lie groupG in Cn is a mapping4: G→ Aut

(
Cn
)

which preserves group multiplication (here Aut
(
Cn
)

is the set of all linear invertible maps
of the vector spaceCn thus of all regular complexn× n matrices)

∀g, h f ∈ G f = g ◦ h ⇒ 4(f ) = 4(g)4(h). (2.2)

As the identity in Aut
(
C3
)

maps every group element ofSU3 andSL3(C) onto itself one
uses the term defining representation. Representations of unitary groups asSU3 will always
be unitary in the following. In this paper our focus lies on properties of the Lie group
SU3 and its Lie algebrasu3. It is helpful, however, to embedSU3 andsu3 in some larger
groups or algebras to have a deeper insight into their structure.

2.2. The Lie algebrasgl3(C), sl3(C),u3 andsu3

In order to understand the structure of the Lie algebrassl3(C) = TeSL3(C) (whereTe
stands for the tangent space at the unit elemente of the group) andsu3 = TeSU3, it is
convenient first to consider the Lie algebrasgl3(C) = TeGL3(C) andu3 = TeU3 (GL3(C)
is the group of complex regular 3× 3 matrices). It is easy to see that the exponential
exp(A) for any complex 3× 3 matrix A is a regular matrix exp(A) ∈ GL3(C) with
exp(A)−1 = exp(−A). Thus in the defining representationgl3(C) is a complex vector
space with complex dimension dimC = 9 spanned by matrices

Sij = |i〉〈j | i, j = 1, 2, 3. (2.3)

In the quantum mechanics of a three-level atom these matrices describe a transition from
the level |j〉 to the level|i〉 and their expectation values have the meaning of a complex
polarization for the non-diagonal matrices and of the occupation number for the diagonal
matrices. Of course these interpretations go through as well for a set ofN three-level atoms
whereSij has to be replaced by its (in general reducible) representation4N(Sij ) in C3N

4N(Sij ) =
N∑
µ=1

S
µ

ij (2.4)

whereSµij acts as the matrixSij on the three levels of theµth atom and as an identity on
the rest.

It is easily seen that the matricesSij (and thus also their representatives4(Sij )) obey
the commutation relations

[Sij , Skl ] = δkjSil − δilSkj (2.5)

and their Hermitian conjugates fulfil

S
†
ij = Sji . (2.6)

It is often better to think ofSij as abstract objects which obey (2.5) and (2.6) (we shall
also have to consider productsSijSkl from time to time and these have special properties in
the defining representation which are not preserved in general representations ofgl3(C)).
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The Lie algebrau3 is the subalgebra of anti-Hermitian matrices ingl3(C). Then exp(A)
is unitary forA ∈ u3 andu3 is a real vector space of real dimension dimR(u3) = 9. The
algebrasgl3(C) andu3 split into two invariant (normal) subalgebras

gl3(C) = gl1(C)⊕ sl3(C)
u3 = u1⊕ su3

(2.7)

where gl1(C) ≡ C and u1 ≡ S1 are vector spaces of dimension dimC(gl1) = 1 and
dimR(u1) = 1 spanned by

N = S11+ S22+ S33. (2.8)

In a quantum-mechanical model for many three-level atomsN is the operator that counts
the number of atoms. The Lie algebrasl3(C) is the subalgebra ofgl3(C) such that trA = 0
for A ∈ sl3(C), i.e. det exp(A) = 1. It is spanned by the six generatorsSij with i 6= j and

H1 = 1
2(S11− S22) H2 = 1

2(S22− S33) (2.9)

and has complex dimension dimC(sl3(C)) = 8. The two operatorsH1 and H2 count
the population differences between the pairs of levels(|1〉, |2〉) and (|2〉, |3〉). Finally,
su3 ⊂ sl3(C) is the real Lie subalgebra of anti-Hermitian generators and has real dimension
dimR(su3) = 8. The generatorsH1 andH2 span the so-called Cartan subalgebra (maximal
commutative subalgebra [18]) with

[H1, H2] = 0. (2.10)

We shall call the generatorsSij raising operators ifi < j and lowering operators ifi > j .

2.3. Some helpful disentangling formulae

In the definition ofSU3 coherent states the following group elementb−[γ ] ∈ SL3(C)
depending on three complex numbersγ1, γ2, γ3 ∈ C will be frequently used

b−[γ ] := exp
(
γ1S21+ γ2S32+

(
γ3− 1

2γ1γ2
)
S31
) =

 1 0 0
γ1 1 0
γ3 γ2 1

 (2.11)

with the shorthandγ = (γ1, γ2, γ3) ∈ C3.
In fact, the above group element belongs to the subgroup of lower triangular matrices

in SL3(C) having unit diagonal elements. This subgroup is a (non-unitary) representation
of the Heisenberg–Weyl group [18] and is generated by the lowering operatorsSij (i > j ).
It will be denotedB−. The following disentangling formula forb−[γ ] is derived easily by
an explicit calculations in the defining representation:

b−[γ ] = exp((γ3− γ1γ2)S31) exp(γ2S32) exp(γ1S21)

= exp(γ3S31) exp(γ1S21) exp(γ2S32). (2.12)

As b−[γ ] is a lower triangular matrix its Hermitian conjugateb−[γ ]† is an upper triangular
matrix (b−[γ ]† ∈ B+). In the productb−[γ ]† ◦ b−[γ ] all lowering operators are to the right
of all raising operators. It is sometimes useful to reorder this product in such a way that all
the raising operators are on the right and all the lowering operators on the left

b−[γ ]† ◦ b−[γ ] = b−[α] ◦ hdiag ◦ b−[α]†

= exp
(
α1S21+ α2S32+

(
α3− 1

2α1α2
)
S31
) ◦ exp(2F1H1+ 2F2H2)

◦ exp
(
α∗1S12+ α∗2S23+

(
α∗3 − 1

2α
∗
1α
∗
2

)
S13
)

(2.13)
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F1 := logf1

F2 := logf2

f1 := 1+ |γ1|2+ |γ3|2
f2 := 1+ |γ2|2+ |γ3− γ1γ2|2

α1 := 1

f1
(γ1+ γ ∗2 γ3)

α2 := 1

f2
(γ2− γ ∗1 (γ3− γ1γ2))

α3 := 1

f1
γ3

(2.14)

which again can be proved by an explicit calculation in the defining representation (see also
[19–21]).

2.4. Parametrization ofSL3(C) andSU3

A parametrization of the Lie groupSU3 suitable for the topics to be discussed in this paper
is obtained via so-called Gauss decomposition [18]. Almost every (with respect to the Haar
measure) 3× 3 matrixA ∈ SL3(C) can be expressed as a product of three matrices

A = b− ◦ d ◦ b+ (2.15)

where b− ∈ B−, b+ ∈ B+ and d is a diagonal matrix with unit determinant. A useful
parametrization of the subgroupSU3 ⊂ SL3(C) valid for almost all matrices inSU3 is thus
achieved by requiringA to be unitary. Shifting the phases resulting from the matrixd to
the right we obtain the following parametrization of a group elementg[γ ;ψ1, ψ2] ∈ SU3:

g[γ ;ψ1, ψ2] = exp
(
γ1S21+ γ2S32+

(
γ3− 1

2γ1γ2
)
S31
) ◦ exp(−F1H1− F2H2)

◦ exp
(
β∗1S12+ β∗2S23+

(
β∗3 − 1

2β
∗
1β
∗
2

)
S13
) ◦ exp(iψ1H1+ iψ2H2). (2.16)

If we include all kinds of limits|γi | → ∞ every group element is reached. HereF1 andF2

are real functions ofγ given by (2.14). The parameterγ ranges inC3 and the real angles
ψ1,2 in [0, 4π) asH1,2 has half-integer eigenvalues. As a consequence of the unitarity of
A the coefficientsβ are complex functions ofγ

β1 = −(γ1+ γ ∗2 γ3)
1√
f2

β2 =
(
γ ∗1 γ3− γ2

(
1+ |γ1|2

)) 1√
f1

β3 = −(γ3− γ1γ2)

√
f1

f2
.

(2.17)

The above relations can be easily inverted giving the parametersγi as functions ofβj ,

γ1 = −(β1+ β∗2β3)
1√
f2

γ2 =
(
β∗1β3− β2

(
1+ |β1|2

)) 1√
f1

γ3 = −(β3− β1β2)

√
f1

f2
.

(2.18)
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Note the symmetry between (2.17) and (2.18). The matrixg[γ ;ψ1, ψ2] in the defining
representation is given explicitly by

g[γ ;ψ1, ψ2] =
 1 0 0
γ1 1 0
γ3 γ2 1

 ◦
 1/

√
f 1 0 0

0
√
f1/f2 0

0 0
√
f2

 ◦
 1 β∗1 β∗3

0 1 β∗2
0 0 1


◦
 exp(iψ1/2) 0 0

0 exp(i(ψ2− ψ1)/2) 0
0 0 exp(−iψ2/2)



=



eiψ1/2

√
f1

− (γ
∗
1 + γ2γ

∗
3 )e

i(ψ2−ψ1)/2

√
f1f2

− (γ
∗
3 − γ ∗1 γ ∗2 )e−iψ2/2

√
f2

γ1eiψ1/2

√
f1

(1+ |γ3|2− γ1γ2γ
∗
3 )e

i(ψ2−ψ1)/2

√
f1f2

−γ
∗
2 e−iψ2/2

√
f2

γ3eiψ1/2

√
f1

(γ2− γ ∗1 γ3+ γ2|γ1|2)ei(ψ2−ψ1)/2

√
f1f2

e−iψ2/2

√
f2


.

(2.19)

2.5. SU3 group multiplication

By direct calculations it is possible to derive the group multiplication formulae ofSU3 in
the parametrization given in the last section

g[γ ′′;ψ ′′1 , ψ ′′2 ] = g[γ ′;ψ ′1, ψ ′2] ◦ g[γ ;ψ1, ψ2]. (2.20)

Comparing the matrix on the left-hand side with the one on the right-hand side yields

ψ ′′1 = ψ1+ ψ ′1− 2i log

×
√
f ′2 − (γ ′ ∗1 + γ ′2γ ′ ∗3 )γ1e−i(2ψ ′1−ψ ′2)/2− (γ ′ ∗3 − γ ′ ∗1 γ

′ ∗
2 )γ3e−i(ψ ′1+ψ ′2)/2

√
f ′1∣∣√f ′2 − (γ ′ ∗1 + γ ′2γ ′ ∗3 )γ1e−i(2ψ ′1−ψ ′2)/2− (γ ′ ∗3 − γ ′ ∗1 γ

′ ∗
2 )γ3e−i(ψ ′1+ψ ′2)/2

√
f ′1
∣∣

= ψ1+ ψ ′1− 2i log
1+ β ′ ∗1 γ1ei(ψ ′2−2ψ ′1)/2+ β ′ ∗3 γ3e−i(ψ ′1+ψ ′2)/2∣∣1+ β ′ ∗1 γ1ei(ψ ′2−2ψ ′1)/2+ β ′ ∗3 γ3e−i(ψ ′1+ψ ′2)/2

∣∣
ψ ′′2 = ψ2+ ψ ′2− 2i log

×
√
f ′1 −

(
γ ′ ∗2 − γ ′1γ ′ ∗3 + γ ′ ∗2 |γ ′1|2

)
γ2e−i(2ψ ′2−ψ ′1)/2− γ ′ ∗3 (γ3− γ1γ2)e−i(ψ ′1+ψ ′2)/2

√
f ′2∣∣√f ′1 − (γ ′ ∗2 − γ ′1γ ′ ∗3 + γ ′ ∗2 |γ ′1|2

)
γ2e−i(2ψ ′2−ψ ′1)/2− γ ′ ∗3 (γ3− γ1γ2)e−iψ ′1+ψ ′2/2

√
f ′2
∣∣

= ψ2+ ψ ′2− 2i log
1+ β ′ ∗2 γ2e−i(2ψ ′2−ψ ′1)/2+ (β ′ ∗3 − β ′ ∗1 β ′ ∗2 )(γ3− γ1γ2)e−i(ψ ′1+ψ ′2)/2∣∣1+ β ′ ∗2 γ2e−i(2ψ ′2−ψ ′1)/2+ (β ′ ∗3 − β ′ ∗1 β ′ ∗2 )(γ3− γ1γ2)e−i(ψ ′1+ψ ′2)/2

∣∣
γ ′′1 =

√
f ′2γ

′
1+

(
1+ |γ ′3|2− γ ′1γ ′2γ ′ ∗3

)
γ1ei(ψ ′2−2ψ ′1)/2−√f ′1γ ′ ∗2 γ3e−i(ψ ′1+ψ ′2)/2√

f ′2 − (γ ′ ∗1 + γ ′2γ ′ ∗3 )γ1ei(ψ ′2−2ψ ′1)/2−√f ′1(γ ′ ∗3 − γ ′ ∗1 γ
′ ∗
2 )γ3e−i(ψ ′1+ψ ′2)/2

= [−(β ′1+ β ′ ∗2 β ′3)+ (1+ |β ′3|2− β ′ ∗1 β ′ ∗2 β ′3)γ1ei(ψ ′2−2ψ ′1)/2

+(β ′ ∗2 + β ′ ∗2 |β ′1|2− β ′1β ′ ∗3 )γ3e−i(ψ ′1+ψ ′2)/2]
×
[√
f ′2
(
1+ β ′ ∗1 γ1ei(ψ ′2−2ψ ′1)/2+ β ′ ∗3 γ3e−i(ψ ′1+ψ ′2)/2)]−1

(2.21)
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γ ′′2 =
√
f ′1γ

′
2+

(
1+ |γ ′3|2− γ ′ ∗1 γ

′ ∗
2 γ

′
3

)
γ2e−i(2ψ ′2−ψ ′1)/2+√f ′2γ ′ ∗1 (γ3− γ1γ2)e−i(ψ ′1+ψ ′2)/2√

f ′1 +
(
γ ′1γ

′ ∗
3 − γ ′ ∗2 − γ ′ ∗2 |γ ′1|2

)
γ2e−i(2ψ ′2−ψ ′1)/2−√f ′2γ ′ ∗3 (γ3− γ1γ2)e−i(ψ ′1+ψ ′2)/2

= [(β ′ ∗1 β ′3− β ′2− β ′2|β ′1|2)+ (1+ |β ′3|2− β ′1β ′2β ′ ∗3 )γ2e−i(2ψ ′2−ψ ′1)/2

−(β ′ ∗1 + β ′2β ′ ∗3 )(γ3− γ1γ2)e
−i(ψ ′1+ψ ′2)/2]

×
[√
f ′1
(
1+ β ′ ∗2 γ2e−i(2ψ ′2−ψ ′1)/2+ (β ′ ∗3 − β ′ ∗1 β ′ ∗2 )(γ3− γ1γ2)e

−i(ψ ′1+ψ ′2)/2)]−1

γ ′′3 =
√
f ′2γ

′
3−

(
γ ′ ∗1 γ

′
3− γ ′2− γ ′2|γ ′1|2

)
γ1ei(ψ ′2−2ψ ′1)/2+√f ′1γ3e−i(ψ ′1+ψ ′2)/2√

f ′2 − (γ ′ ∗1 + γ ′2γ ′ ∗3 )γ1ei(ψ ′2−2ψ ′1)/2−√f ′1(γ ′ ∗3 − γ ′ ∗1 γ
′ ∗
2 )γ3e−i(ψ ′1+ψ ′2)/2

=
√
f ′1
f ′2

−(β ′3− β ′1β ′2)− β ′2γ1ei(ψ ′2−2ψ ′1)/2+ γ3e−i(ψ ′1+ψ ′2)/2

1+ β ′ ∗1 γ1ei(ψ ′2−2ψ ′1)/2+ β ′ ∗3 γ3e−i(ψ ′1+ψ ′2)/2

f ′′1 =
f ′1f

′
2f1∣∣√f ′2 − (γ ′ ∗1 + γ ′2γ ′ ∗3 )γ1e−i(2ψ ′1−ψ ′2)/2− (γ ′ ∗3 − γ ′ ∗1 γ

′ ∗
2 )γ3e−i(ψ ′1+ψ ′2)/2

√
f ′1
∣∣2

= f ′1f1∣∣1+ β ′ ∗1 γ1ei(ψ ′2−2ψ ′1)/2+ β ′ ∗3 γ3e−i(ψ ′1+ψ ′2)/2
∣∣2

f ′′2 =
f ′1f

′
2f2∣∣√f ′1 − (γ ′ ∗2 − γ ′1γ ′ ∗3 + γ ′ ∗2 |γ ′1|2

)
γ2e−i(2ψ ′2−ψ ′1)/2− γ ′ ∗3 (γ3− γ1γ2)e−i(ψ ′1+ψ ′2)/2

√
f ′2
∣∣2

= f ′2f2∣∣1+ β ′ ∗2 γ2e−i(2ψ ′2−ψ ′1)/2+ (β ′ ∗3 − β ′ ∗1 β ′ ∗2 )(γ3− γ1γ2)e−i(ψ ′1+ψ ′2)/2
∣∣2 .

We shall need the above group multiplication formulae to calculate the projection of
one coherent state upon another and the action of a group element ofSU3 on a coherent
state. The inverse of a group element of the formg[γ ] := g[γ ;ψ1 = 0, ψ2 = 0] is easily
seen to be

g[γ ]−1 = g[γ ]† = g[β]. (2.22)

2.6. Invariant 1-forms, invariant vector fields and the Haar measure onSU3

There is a basis of eight independent invariant 1-forms onSU3. Any invariant differential
form on SU3 may be expressed as linear combinations of outer products of these. In
particular, the Haar measure (the invariant volume) onSU3 is a differential 8-form. Up to
a constant factor the volume form is given by the outer product of all basis 1-forms. As
SU3 is a matrix group such a basis of invariant 1-forms is given by the independent matrix
elements of the matrix� defined as [22]

� = g[γ ;ψ1, ψ2]−1 dg[γ ;ψ1, ψ2]. (2.23)

This is an anti-Hermitian and traceless matrix of 1-forms. Explicitly its elements are given
by

�11 = i

2
αψ1

= 1

2
i dψ1+ γ ∗1

2f1
dγ1− γ1

2f1
dγ ∗1 +

γ ∗3
2f1

dγ3− γ3

2f1
dγ ∗3

�22 = −�11−�33
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�33 = − i

2
αψ2

= −1

2
i dψ2+ γ2(γ

∗
3 − γ ∗1 γ ∗2 )

2f2
dγ1+

γ1γ
∗
3 − γ ∗2

(
1+ |γ1|2

)
2f2

dγ2− γ
∗
3 − γ ∗1 γ ∗2

2f2
dγ3

−γ
∗
2 (γ3− γ1γ2)

2f2
dγ ∗1 −

γ ∗1 γ3− γ2
(
1+ |γ1|2

)
2f2

dγ ∗2 +
γ3− γ1γ2

2f2
dγ ∗3 (2.24)

�12 = −αγ ∗1
= 1

f1
√
f2

ei(ψ2−2ψ1)/2
(−(1+ |γ3|2− γ1γ2γ

∗
3

)
dγ ∗1 +

(
γ ∗1 γ3− γ2− |γ1|2γ2

)
dγ ∗3

)
�13 = −αγ ∗3
= 1√

f1f2
e−i(ψ1+ψ2)/2(γ ∗2 dγ ∗1 − dγ ∗3 )

�23 = −αγ ∗2
= 1

f2
√
f1

e−i(2ψ2−ψ1)/2(−γ ∗2 (γ1+ γ ∗2 γ3) dγ ∗1 − f1 dγ ∗2 + (γ1+ γ ∗2 γ3) dγ ∗3 )

�21 = αγ1 = −�∗12

�31 = αγ3 = −�∗13

�32 = αγ2 = −�∗23

where we have introduced the 1-formsαx which reduce toαx |e = dx at the identity (γ = 0,
ψ = 0) for x being one of the eight parametersγi, ψi . Thus the Haar measureµ on SU3

reads

µ = −ic�33∧�11∧�21∧�12∧�31∧�13∧�32∧�23

= −ic
1

4f 2
1 f

2
2

dψ1 ∧ dψ2 ∧ dγ1 ∧ dγ ∗1 ∧ dγ2 ∧ dγ ∗2 ∧ dγ3 ∧ dγ ∗3 (2.25)

where the real constantc is chosen in such a way that the volume of the group is normalized
to unity ∫

µ = 1. (2.26)

Noting that the anglesψ1 andψ2 range in [0, 4π) and using∫
d2γ1

∫
d2γ2

∫
d2γ3

1

f 2
1 f

2
2

= π3

2
(2.27)

(with d2γj = d(Reγj )d(Im γj ) = 1
2i dγj ∧ dγ ∗j ) one obtains

c = 1

16π5
. (2.28)

There are also eight invariant vector fieldsVx on SU3 which may be chosen such that

αx(Vy) = δxy. (2.29)



IrreducibleSU3 representations 9879

These are given by

Vψ1 =
∂

∂ψ1

Vψ2 =
∂

∂ψ2

Vγ1 = i
γ ∗1 + γ2γ

∗
3√

f2
e−i(2ψ1−ψ2)/2

∂

∂ψ1
+ f1√

f2
e−i(2ψ1−ψ2)/2

∂

∂γ1
+ γ2f1√

f2
e−i(2ψ1−ψ2)/2

∂

∂γ3

Vγ2 = i

(
γ ∗2 + γ ∗2 |γ1|2− γ1γ

∗
3

)
√
f1

e−i(2ψ2−ψ1)/2
∂

∂ψ2
+ f2√

f1
e−i(2ψ2−ψ1)/2

∂

∂γ2

Vγ3 = i
(γ ∗3 − γ ∗1 γ ∗2 )

√
f1√

f2
e−i(ψ1+ψ2)/2

∂

∂ψ1
+ i
γ ∗3
√
f2√
f1

e−i(ψ1+ψ2)/2
∂

∂ψ2

−
(
γ ∗2 + γ ∗2 |γ1|2− γ1γ

∗
3

)√
f1√

f2
e−i(ψ1+ψ2)/2

∂

∂γ1

+ (γ
∗
1 + γ2γ

∗
3 )
√
f2√

f1
e−i(ψ1+ψ2)/2

∂

∂γ2

+
(
1+ |γ3|2− γ ∗1 γ ∗2 γ3

)√
f1√

f2
e−i(ψ1+ψ2)/2

∂

∂γ3

Vγ1∗ = V ∗γ1

Vγ2∗ = V ∗γ2

Vγ3∗ = V ∗γ3
.

(2.30)

2.7. Irreducible representations ofSU3

We shall only sketch the most important facts about unitary irreducible representations of
SU3 [18]. An irreducible representation of a groupG on a Hilbert spaceH

4: G→ Aut(H) (2.31)

induces, in a natural way, a representation of the Lie algebrag = TeG
ξ := Te4: g→ End(H) (2.32)

whereTe4 denotes the derivative of4 at the identity and End(H) stands for the space of
all linear mappings ofH into itself. When a group elementg ∈ G acts on a vector|ν〉 ∈ H
we shall write, for brevity,g|ν〉 instead of4(g)|ν〉 (and use an analogous convention for
elements of the algebra). As the groupG = SU3 is compact its all irreducible representations
are finite dimensional [18]. In the Hilbert spaceH of any such representation the vector of
highest weight|µ〉 is characterized by [18]

S23|µ〉 = S13|µ〉 = S12|µ〉 = 0. (2.33)

We shall assume|µ〉 to be normalized. The vector of highest weight is unique up to a phase
factor and it is a common eigenvector of the Cartan subalgebra generators ofsu3

H1|µ〉 = 1
2λ1|µ〉 H2|µ〉 = 1

2λ2|µ〉. (2.34)

The two numbersλi are positive integers which characterize an irreducible representation
uniquely. We shall call it the [λ1, λ2]-representation. Its dimension is [18]

dimH[λ1,λ2] = 1
2(λ1+ 1)(λ2+ 1)(λ1+ λ2+ 2). (2.35)
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Each representation induces, also in a natural way, a representation ofSL3(C), of its Lie
algebrasl3(C), and of the universal enveloping algebra ofsl3(C) (the algebra of formal
products of elements ofsl3(C)).

3. SU3 coherent states

3.1. Definition ofSU3 coherent states

The coherent states are a special overcomplete basis in the Hilbert space of the [λ1, λ2]-
representation ofSU3. Their properties are neatly connected to the Lie groupsSU3 and
SL3(C). If |µ〉 is the highest weight vector (2.33) and if bothλ1 andλ2 are non-vanishing
then a coherent state‖γ 〉 is defined as [14]

‖γ 〉 := b−[γ ]|µ[λ1,λ2]〉 (3.1)

whereb−[γ ] is given by (2.12). Such states are not normalized. Using (2.13), (2.33), and
(2.34) the squared norm of‖γ 〉 is calculated to be

〈γ ‖γ 〉 = f λ1
1 f

λ2
2 . (3.2)

The logarithm of this norm will play the role of a generating function for the symplectic
structure calculated in section 4

F = log〈γ ‖γ 〉 = λ1 log(f1)+ λ2 log(f2). (3.3)

The normalized coherent states are given by

|γ 〉 = f −λ1/2
1 f

−λ2/2
2 ‖γ 〉 = g[γ ]|µ〉 (3.4)

hence|µ〉 = |γ = 0〉. We will allow the limit |γi | → ∞ for coherent states.
If either λ1 = 0 or λ2 = 0 the definition (3.1) would still give well defined coherent

states [23]. However, there would be some degeneracy which we would like to avoid.
One may easily calculate that all elements of the Heisenberg–Weyl groupB− of the form
b−[γ1 = 0, γ2 = z, γ3 = 0] leave the highest weight vector in a [λ1, λ2 = 0]-representation
invariant

b−[γ1 = 0, γ2 = z, γ3 = 0]|µ[λ1,λ2=0]〉 = |µ[λ1,λ2=0]〉. (3.5)

In the other case we have

b−[γ1 = z, γ2 = 0, γ3 = 0]|µ[λ1=0,λ2]〉 = |µ[λ1=0,λ2]〉. (3.6)

We shall call these irreducible representations degenerate and in order to divide out this
isotropy we restrictb−[γ ] (3.1) toγ2 = 0 if λ1 = 0 and toγ1 = 0 if λ2 = 0 (if bothλi vanish
we have the trivial representation which is of no interest here). The definition of normalized
coherent states goes through just as before (setting the appropriate variable to zero in (3.2)–
(3.4)). All of the following calculations are true in the degenerate representations with the
given additional settings if no restriction is explicitly mentioned. We shall now give some
useful properties ofSU3 coherent states.

3.2. Action ofSU3 andsl3(C) on a coherent state

The group multiplication formula in section 2.5 enables us to give the action of aSU3 Lie
group elementg(γ ′;ψ ′1, ψ ′2) on a coherent state|γ 〉 in the [λ1, λ2] representation

g(γ ′;ψ ′1, ψ ′2)|γ 〉 = exp(iψ ′′1λ1/2) exp(iψ ′′2λ2/2)|γ ′′〉. (3.7)
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The double-primed variables are connected to the single-primed and non-primed ones
by the group multiplication formulae (2.20) and (2.21) of the formg[γ ′′;ψ ′′1 , ψ ′′2 ] =
g[γ ′;ψ ′1, ψ ′2] ◦ g[γ ;ψ1 = 0, ψ2 = 0]. Since the algebrasl3(C) is in a natural way
represented in the same spaceH, we can consider its action on the coherent states. The
action of an element ofsl3(C) on a coherent state does not, in general, yield another
coherent state. It is best expressed in terms of differential operators

Sij |γ 〉 = 1ij

(
γ,

∂

∂γ

)
|γ 〉. (3.8)

Note that in products the order has to be reversed

SijSkl|γ 〉 = 1kl

(
γ,

∂

∂γ

)
1ij

(
γ,

∂

∂γ

)
|γ 〉. (3.9)

Using the definition of coherent states these differential operators may be calculated
explicitly. We give the differential operators for the action on non-normalized coherent
states (the normalization is easily introduced)

S32‖γ 〉 =
(
∂

∂γ2
+ γ1

∂

∂γ3

)
‖γ 〉

S31‖γ 〉 = ∂

∂γ3
‖γ 〉

S21‖γ 〉 = ∂

∂γ1
‖γ 〉

S23‖γ 〉 =
(
γ2λ2+ γ3

∂

∂γ1
− γ 2

2
∂

∂γ2

)
‖γ 〉

S13‖γ 〉 =
(
γ3λ1+ (γ3− γ1γ2)λ2− γ1γ3

∂

∂γ1
− γ2(γ3− γ1γ2)

∂

∂γ2
− γ 2

3
∂

∂γ3

)
‖γ 〉

S12‖γ 〉 =
(
γ1λ1− γ 2

1
∂

∂γ1
− (γ3− γ1γ2)

∂

∂γ2
− γ1γ3

∂

∂γ3

)
‖γ 〉

H1‖γ 〉 =
(
λ1

2
− γ1

∂

∂γ1
+ 1

2
γ2

∂

∂γ2
− 1

2
γ3

∂

∂γ3

)
‖γ 〉

H2‖γ 〉 =
(
λ2

2
+ 1

2
γ1

∂

∂γ1
− γ2

∂

∂γ2
− 1

2
γ3

∂

∂γ3

)
‖γ 〉.

(3.10)

In the degenerate representations the coherent states depend only on two of the variables
γi . The partial derivatives over the third variable vanish in these formulae.

3.3. Scalar product of two coherent states

The projection of one coherent state|γ ′〉 upon another one|γ 〉 is also derived via the group
multiplication formulae (2.20)

〈γ ′|γ 〉 = 〈µ|g†[γ ′]g[γ ]|µ〉
= 〈µ|g[β ′; 0, 0]g[γ ; 0, 0]|µ〉
= 〈µ|g[γ̃ ; ψ̃1, ψ̃2]|µ〉 (3.11)

whereγ̃ is connected toβ andγ by (2.21). This leads to

〈γ ′|γ 〉 =
(

1+ γ ′ ∗1 γ1+ γ ′ ∗3 γ3√
f1f

′
1

)λ1
(

1+ γ ′ ∗2 γ2+ (γ ′ ∗3 − γ ′ ∗1 γ
′ ∗
2 )(γ3− γ1γ2)√

f2f
′
2

)λ2

. (3.12)
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3.4. Resolution of unity

Coherent states form an overcomplete basis of the Hilbert spaceH[λ1,λ2] . This shows up in
the fact that there exists a resolution of unity which is given by

I = dimH[λ1,λ2]

∫
µ|γ 〉〈γ |

= (λ1+ 1)(λ2+ 1)(λ1+ λ2+ 2)

π3

∫
d2γ1 d2γ2 d2γ3

1

f 2
1 f

2
2

|γ 〉〈γ | (3.13)

for the non-degenerate representations. The measureµ appearing in (3.13) is the Haar
measure onSU3 given in section 2.6. The integration over the anglesψ1,2 is carried out
in the last line of (3.13) (that is the integration over the subgroup that leaves the highest
state vector|µ〉 invariant; one may call this the isotropy subgroup). For the degenerate
representations we have to integrate over the full isotropy subgroup which is now four
dimensional. This leads to

I = (λ1+ 1)(λ1+ 2)

π2

∫
d2γ1 d2γ3

1

f 3
1

|γ 〉〈γ | for λ2 = 0

I = (λ2+ 1)(λ2+ 2)

π2

∫
d2γ2 d2γ3

1

(f2|γ1=0)3
|γ 〉〈γ | for λ1 = 0.

(3.14)

The proof of (3.13) and (3.14) is based on the Schur’s lemma and trI = dimH[λ1,λ2] .

3.5. Expectation values of elements of thesl3(C) Lie algebra and its universal enveloping
algebra in the coherent states

If O is an operator in the universal enveloping algebra ofsl3(C) (O is a sum of products of
generators ofsl3(C) of arbitrary order) then the expectation value ofOSij in the coherent
states may be expressed by the expectation value ofO,

〈γ |OS32|γ 〉 =
[
λ1

f1
γ1γ

∗
3 +

λ2

f2
γ ∗2 +

∂

∂γ2
+ γ1

∂

∂γ3

]
〈γ |O|γ 〉

〈γ |OS31|γ 〉 =
[
λ1

f1
γ ∗3 +

λ2

f2
(γ ∗3 − γ ∗1 γ ∗2 )+

∂

∂γ3

]
〈γ |O|γ 〉

〈γ |OS21|γ 〉 =
[
λ1

f1
γ ∗1 −

λ2

f2
γ2(γ

∗
3 − γ ∗1 γ ∗2 )+

∂

∂γ1

]
〈γ |O|γ 〉

〈γ |OS23|γ 〉 =
[
λ1

f1
γ ∗1 γ3+ λ2

f2
γ2+ γ3

∂

∂γ1
− γ 2

2
∂

∂γ2

]
〈γ |O|γ 〉 (3.15)

〈γ |OS13|γ 〉 =
[
λ1

f1
γ3+ λ2

f2
(γ3− γ1γ2)− γ1γ3

∂

∂γ1
− γ2(γ3− γ1γ2)

∂

∂γ2
− γ 2

3
∂

∂γ3

]
〈γ |O|γ 〉

〈γ |OS12|γ 〉 =
[
λ1

f1
γ1− λ2

f2
γ ∗2 (γ3− γ1γ2)− γ 2

1
∂

∂γ1
− (γ3− γ1γ2)

∂

∂γ2
− γ1γ3

∂

∂γ3

]
〈γ |O|γ 〉
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〈γ |OH1|γ 〉 =
[
λ1

2f1

(
1− |γ1|2

)+ λ2

2f2

(|γ2|2− |γ3− γ1γ2|2
)

−γ1
∂

∂γ1
+ 1

2
γ2

∂

∂γ2
− 1

2
γ3

∂

∂γ3

]
〈γ |O|γ 〉

〈γ |OH2|γ 〉 =
[
λ1

2f1

(|γ1|2− |γ3|2
)+ λ2

2f2

(
1− |γ2|2

)
+1

2
γ1

∂

∂γ1
− γ2

∂

∂γ2
− 1

2
γ3

∂

∂γ3

]
〈γ |O|γ 〉

which can be calculated using the action ofsl3(C) generators on a coherent state (3.10).
Using the above formulae we define differential operators∂ij via

〈γ |OSij |γ 〉 = 〈γ |Sij |γ 〉〈γ |O|γ 〉 + ∂ij 〈γ |O|γ 〉. (3.16)

Expectation values of the kind〈γ |SijO|γ 〉 are found from

〈γ |SijO|γ 〉 = 〈γ |O†Sji |γ 〉∗. (3.17)

SettingO = I in (3.15) gives the expectation values of the generators ofsl3(C) in coherent
states

〈γ |S32|γ 〉 = λ1

f1
γ1γ

∗
3 +

λ2

f2
γ ∗2

〈γ |S31|γ 〉 = λ1

f1
γ ∗3 +

λ2

f2
(γ ∗3 − γ ∗1 γ ∗2 )

〈γ |S21|γ 〉 = λ1

f1
γ ∗1 −

λ2

f2
γ2(γ

∗
3 − γ ∗1 γ ∗2 )

〈γ |S23|γ 〉 = λ1

f1
γ ∗1 γ3+ λ2

f2
γ2

〈γ |S13|γ 〉 = λ1

f1
γ3+ λ2

f2
(γ3− γ1γ2)

〈γ |S12|γ 〉 = λ1

f1
γ1− λ2

f2
γ ∗2 (γ3− γ1γ2)

〈γ |H1|γ 〉 = λ1

2f1

(
1− |γ1|2

)+ λ2

2f2

(|γ2|2− |γ3− γ1γ2|2
)

〈γ |H2|γ 〉 = λ1

2f1

(|γ1|2− |γ3|2
)+ λ2

2f2

(
1− |γ2|2

)
.

(3.18)

Expectation values of squared generators are easily calculated as well using (3.17).

3.6. TheSU3-orbits onPH[λ1,λ2]

Usually a quantum-mechanical state is described by a vector in a Hilbert spaceH appropriate
to the system. However in a Hilbert space there are many vectors describing the same state.
One may overcome this degeneracy by defining quantum mechanics on the projective space
PH, the space of all rays in the Hilbert spaceH. If |ψ〉 is a non-vanishing vector inH we
write

[|ψ〉] := {|χ〉 ∈ H: |χ〉 = c|ψ〉 for somec ∈ C}. (3.19)
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Thus [|ψ〉] is an equivalence class of vectors inH\{0} and the projective space is the space
of equivalence classes

PH = H\{0}/∼ (3.20)

with dimension dimC PH = dimCH − 1. If a groupG acts on the Hilbert spaceH via a
representation a group homomorphism on the projective space is induced

g[|ψ〉] = [g|ψ〉] for g ∈ G. (3.21)

Now an orbitO of the groupG through a vector|ψ〉 ∈ H or through a ray (or a state)
[|ψ〉] ∈ PH may be defined by

OG(|ψ〉) = {|χ〉 ∈ H: |χ〉 = g|ψ〉 for someg ∈ G} ≡ G|ψ〉 ⊂ H
OG([|ψ〉]) = {[|χ〉] ∈ PH: [|χ〉] = g[|ψ〉] for someg ∈ G} ≡ G[|ψ〉] ⊂ PH. (3.22)

We have defined a coherent state vector as an element of anSU3/I[λ1,λ2] -orbit through the
highest weight vector|µ〉 ∈ H[λ1,λ2] . HereI[λ1,λ2] denotes the so-called isotropy subgroup
of the highest weight defined by

I[λ1,λ2] =
{
g ∈ SU3: g|µ〉[λ1,λ2] = eit |µ〉[λ1,λ2] for somet ∈ R}. (3.23)

For the non-degenerate representations we have

I[λ1,λ2] = U1× U1 for λ1, λ2 6= 0 (3.24)

and in the degenerate case

I[λ1,λ2] = SU2× U1 for λ1 = 0 or λ2 = 0. (3.25)

Topologically the coherent states are equivalent to the quotient ofSU3 and the isotropy
subgroup

OSU3/U1×U1(|µ〉) ' OSU3([|µ〉]) ' SU3/U1× U1 for λ1, λ2 6= 0

OSU3/SU2×U1(|µ〉) ' OSU3([|µ〉]) ' SU3/SU2× U1 for λ1 = 0 or λ2 = 0.
(3.26)

As SU3 is compact one may show that so is this quotient orbit. In the projective space
PH[λ1,λ2] the coherent states form anSU3-orbit OSU3([|µ〉[λ1,λ2] ]). This orbit inPH[λ1,λ2] is
uniquely determined by one of the following properties [24]:

• it is both aSL3(C)-orbit and aSU3-orbit;
• it is a unique closedSL3(C)-orbit;
• it is a unique complexSU3-orbit.

The orbitsOSU3/I[λ1,λ2] (|µ〉[λ1,λ2]) ⊂ H[λ1,λ2] and OSU3([|µ〉[λ1,λ2] ]) ⊂ PH[λ1,λ2] are easily
seen to be isomorphic. The complex structure is easily recovered if we recall our former
definition which usedC3 andC2 to parametrize the coherent states.

4. The symplectic structure on coherent states and the classical limit

The coherent states inPH[λ1,λ2] also possess a symplectic structure that is invariant under
the group action. This makes this orbit very interesting for defining a classical limit for
a quantum-mechanical system which is an inverse procedure to geometrical quantization
(the mathematical and physical literature is very large, so we mention only a few important
contributions [25–30], most books and papers cited elsewhere in our paper also deal with
this subject from some point of view).
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4.1. The symplectic structure on a Hilbert space

On any complex Hilbert spaceH ≡ Cn one may canonically define a symplectic structure
ωH using the canonical scalar product [31, 32]

ωH(|φ1〉, |φ2〉) = 2h̄ Im{〈φ1|φ2〉} = h̄(〈φ1|φ2〉 − 〈φ2|φ1〉) for |φ1〉, |φ2〉 ∈ T|x〉H.
(4.1)

We have identified the Hilbert spaceH with its tangent spaceT|x〉H at |x〉 ∈ H
here. Thus every Hilbert space of complex dimension dimCH = n is also a linear
symplectic space of real dimension dimRH = 2n. In quantum mechanics the Hamiltonian
H ∈ iun generates a unitary action on the Hilbert space. As unitary action leaves the
scalar product invariant, the quantum-mechanical dynamics leaves the symplectic structure
invariant. Formally quantum mechanics is a special case of Hamiltonian mechanics. More
explicitly we may introduce an orthonormal basis|k〉, k = 1, . . . , n and write a vector
|ψ〉 = ∑n

k=1 zk|k〉 =
∑n

k=1(qk + ipk)|k〉, qk, pk ∈ R, zk ∈ C with real coordinatesqk and
pk. In these coordinates the symplectic 2-form has the canonical form

ωH = ih̄
n∑
k=1

dzk ∧ dz∗k = 2h̄
n∑
k=1

dqk ∧ dpk. (4.2)

Define the Hamilton function
h: H→ R

|ψ〉 → h(|ψ〉) = 〈ψ |H |ψ〉 =
n∑

k,l=1

〈k|H |l〉(qk − ipk)(ql + ipl).
(4.3)

The Schr̈odinger equation has now the form of Hamilton’s equations with respect to the
symplectic 2-form (4.2) [32]

ih̄|ψ̇〉 = H |ψ〉
⇐⇒

q̇k = 1

2h̄

∂h

∂pk
and ṗk = − 1

2h̄

∂h

∂qk
.

(4.4)

As stated before we may define quantum mechanics as well in the projective spacePH.
The projective space inherits a Hermitian and a symplectic structure from its underlying
Hilbert space. Quantum dynamics on the projective space may then be written again in the
form of Hamilton’s equations. We shall give the symplectic structure explicitly in affine
coordinates. The orthonormal basis{|k〉}k=1,...,n of the Hilbert spaceH inducesn local
so-called affine charts on open setsUk = {[|ψ〉] ∈ PH: 〈k|ψ〉 6= 0} ⊂ PH, k = 1, . . . , n.
Affine coordinates on for [|ψ〉] ∈ Un where|ψ〉 =∑n

k=1 zk|k〉 are given by

wl = zl

zk
l = 1, . . . , n wk = 1 (4.5)

one usually writes [|ψ〉] = [z1 : z2 : . . . : zn] = [w1 : . . . : wk = 1 : . . . : wn] = [w] to
define a ray inUk. The symplectic 2-form in these affine coordinates is given explicitly by
[31]

ωPH|Uk = ih̄
n∑

r,s=1;r,s 6=k

∂2 logNk
∂w∗r ∂ws

dwr ∧ dw∗s (4.6)

with

Nk =
n∑
t=1

|wt |2 with |wk|2 = 1. (4.7)
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If we embedUk in the Hilbert space by

Pk: Uk → H

Pk[w] =
n∑
l=1

wl|l〉 ≡ |w〉k
(4.8)

we may writeNk as the squared norm

Nk = |Pk[w]|2 = 〈w|w〉k. (4.9)

We shall call the functionNk a generating function of the symplectic 2-form. In the next
section we shall sketch how the symplectic structure onH or PH gives aSU3-invariant
symplectic structure on the submanifold ofSU3-coherent states if an irreducible unitary
representation ofSU3 acts onH. Note that forH = Cn we may defineSUn-coherent
states. Now every normalized vector inCn is aSUn-coherent state up to a phase factor, in
fact the manifold ofSUn-coherent states onCn may be identified with the projective space
CPn−1 ≡ PCn. Now the symplectic structure defined onCPn−1 is clearly group invariant
with respect toSUn.

4.2. The symplectic structure onSU3 coherent states

Let us now consider the Hilbert spaceH[λ1,λ2] of an irreducibleSU3-representation. The
coherent statesOSU3([|µ〉[λ1,λ2] ]) form an SU3-invariant submanifold ofPH[λ1,λ2] . It is
therefore possible to reduce the symplectic 2-form (4.6) on the projective space to aSU3-
invariant 2-form on theSU3-orbit of coherent states. Let us assume as before that we
have an orthonormal basis|k〉, k = 1, . . . , n in H[λ1,λ2] wheren = dimCH[λ1,λ2] and that
the highest weight vector in this basis|µ〉 = |1〉. If we now embed coherent states in
U1 ⊂ PH[λ1,λ2] in the Hilbert spaceH[λ1,λ2] via P1 (see equation (4.8)) we see that we arrive
at an unnormalized coherent state vector inH[λ1,λ2]

P1[|γ 〉] = ‖γ 〉. (4.10)

We have seen before that the generating functionN1 for the symplectic 2-form on the
projective space is given by the norm of the vectors inH[λ1,λ2] associated to rays by the
embeddingP1. All we have to do is to restrict this embedding to coherent states

ωSU3 = ih̄
3∑

i,j=1

ωij dγi ∧ dγ ∗j

ωij = ∂2F
∂γi ∂γ

∗
j

(4.11)

F = log
(
f
λ1
1 f

λ2
2

) = log〈γ ‖γ 〉. (4.12)

For the degenerate representations we have to sum over two indices only. Explicitly the
coefficientsωij read

ω11 = λ1

f 2
1

(
1+ |γ3|2

)+ λ2

f 2
2

|γ2|2
(
1+ |γ2|2

)
ω12 = λ2

f 2
2

γ2(γ
∗
1 + γ2γ

∗
3 )

ω13 = − λ1

f 2
1

γ ∗1 γ3− λ2

f 2
2

γ2
(
1+ |γ2|2

)
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ω21 = λ2

f 2
2

γ ∗2 (γ1+ γ ∗2 γ3)

ω22 = λ2

f 2
2

f1 (4.13)

ω23 = − λ2

f 2
2

(γ1+ γ ∗2 γ3)

ω31 = − λ1

f 2
1

γ1γ
∗
3 −

λ2

f 2
2

γ ∗2
(
1+ |γ2|2

)
ω32 = − λ2

f 2
2

(γ ∗1 + γ2γ
∗
3 )

ω33 = λ1

f 2
1

(
1+ |γ1|2

)+ λ2

f 2
2

(
1+ |γ2|2

)
.

The symplectic form may also be written in the form

ωSU3 = ih̄λ1

[
d
γ1√
f1
∧ d

γ ∗1√
f1
+ d

γ3√
f1
∧ d

γ ∗3√
f1

]
+ih̄λ2

[
d
γ2√
f2
∧ d

γ ∗2√
f2
+ d

γ3− γ1γ2√
f2

∧ d
γ ∗3 − γ ∗1 γ ∗2√

f2

]
(4.14)

which shows how it becomes degenerate in the limitλi → 0. Forλi = 0 one can also read
from (4.11) the appropriate canonical variables in both degenerates cases. We shall deal
with canonical variables in section 4.4.

The invariant 1-forms on the groupSU(3) derived in section 2.6 induceSU3/I[λ1,λ2]

invariant 1-forms on the orbitsOSU3/I[λ1,λ2] (|µ〉) and OSU3([|µ〉]) as well. In the non-
degenerate case there are six independent invariant 1-forms. As we used the same
coordinates for the parametrization of the groupSU3, for the quotientSU3/I[λ1,λ2] and
the coherent states these induced 1-forms are just given by restricting the 1-formsαγi in
(2.24) appropriately

α̃γi = αγi |ψ1=0,ψ2=0. (4.15)

In terms of these invariant 1-forms the symplectic 2-formωSU3 is diagonal

ωSU3 = ih̄[λ1α̃γ1 ∧ α̃γ ∗1 + λ2α̃γ2 ∧ α̃γ ∗2 + (λ1+ λ2)α̃γ3 ∧ α̃γ ∗3 ]. (4.16)

In the resolution of unity (3.13) the Haar measure is integrated over the isotropy subgroup
I[λ1,λ2] , In the non-degenerate case this partly integrated measure is related to the third power
of the symplectic 2-form∫

U1×U1

µ = cω3
SU3

(4.17)

with a constantc which may be deduced from (3.13) using

detωij = λ1λ2(λ1+ λ2)

f 2
1 f

2
2

. (4.18)

With the given symplectic 2-form we may construct Poisson brackets for complex-valued
functions on the orbits of coherent states. The Poisson bracket for any two functions
f (γ ), g(γ ) ∈ C1(OSU3([|µ〉])) on the orbit of coherent states is determined by

{f, g} = i

h̄

3∑
k,l=1

ωkl
(
∂f

∂γl

∂g

∂γ ∗k
− ∂f

∂γ ∗k

∂g

∂γl

)
(4.19)
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where the coefficient matrixωij is just the inverse matrix ofωij

ωikωkj = δij . (4.20)

In the non-degenerate case this matrix is given explicitly by

ω11 = f1

(λ1+ λ2)

((
1+ |γ1|2

)+ λ2

λ1

f1

f2

)
ω12 = 1

(λ1+ λ2)
(γ ∗1 + γ2γ

∗
3 )
(
γ ∗1 γ3− γ2− γ2|γ1|2

)
ω13 = f1

(λ1+ λ2)

(
γ ∗1 γ3+ λ2

λ1

f1

f2
γ2

)
ω21 = 1

(λ1+ λ2)
(γ1+ γ ∗2 γ3)

(
γ1γ

∗
3 − γ ∗2 − γ ∗2 |γ1|2

)
ω22 = f2

(λ1+ λ2)

((
1+ |γ2|2

)+ λ1

λ2

f2

f1

)
ω23 = 1

(λ1+ λ2)
(γ1+ γ ∗2 γ3)

(
1+ |γ3|2− γ ∗1 γ ∗2 γ3

)
ω31 = f1

(λ1+ λ2)

(
γ1γ

∗
3 +

λ2

λ1

f1

f2
γ ∗2

)
ω32 = 1

(λ1+ λ2)
(γ ∗1 + γ2γ

∗
3 )
(
1+ |γ3|2− γ1γ2γ

∗
3

)
ω33 = f1

(λ1+ λ2)

((
1+ |γ3|2

)+ λ2

λ1

f1

f2
|γ2|2

)
.

(4.21)

In the degenerate case only the appropriate 2× 2 submatrix has to be taken (with the
additional settings given above). These Poisson brackets are connected to the commutators
of the Lie algebrasu3 by

i〈γ |[A,B]|γ 〉 = h̄{〈γ |A|γ 〉, 〈γ |B|γ 〉} for A,B ∈ su3. (4.22)

4.3. Coherent states and orbits of the coadjoint representation

Above we have sketched how aSU3-invariant symplectic structure on coherent states is
defined by restriction of the symplectic 2-form in the Hilbert space to the submanifold of
coherent states. There is another very instructive way to look at this symplectic structure.
Here we shall sketch a one-to-one map from the orbit of coherent statesOSU3([|µ〉]) to su∗3
the dual of the Lie algebrasu3. This so-called momentum map is surjective on submanifolds
of su∗3 called orbits of the coadjoint representation.

Before defining the momentum map we shall shortly summarize some basic facts about
the coadjoint representations of a groupG and about the symplectic structure ong∗ (the
dual of the Lie algebrag = T |eG). We assume here that the Lie algebrag has finite
dimension (more general results may be found in [18, 31, 32]). The adjoint representation
is a homomorphism of the groupG on the automorphisms of its algebra Ad :G→ Aut(g).
If g ∈ G andX ∈ g one defines

g ∈ G 7−→ Adg : g→ g

Adg X = d

dt

∣∣∣∣
t=0

g ◦ eXt ◦ g−1 for X ∈ g. (4.23)
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If G is a matrix group this reduces to

Adg X = gXg−1 (4.24)

where the product is calculated by matrix multiplication. The coadjoint representation
Ad∗ : G→ g∗ is defined via the pairing(ξ,X) ∈ C for ξ ∈ g∗ andX ∈ g

g ∈ G 7−→ Ad∗g : g∗ → g∗

Ad∗g ξ : g→ C for ξ ∈ g∗ such that

(Ad∗g ξ,X) = (ξ,Adg−1 X) ∀ X ∈ g.
(4.25)

If G is a semisimple matrix group one may define a non-degenerate scalar product on the
algebrag coinciding with the so-called Killing formK: g × g→ C. It is given by

K(Y,X) = tr(Y †X) X, Y ∈ g (4.26)

whereY † is the matrix Hermitian conjugate toY . Using the Killing form we may identify
g with g∗ via X→ KX ≡ K(X, ·): g→ C. Now Ad∗ may be given more explicitly

Ad∗g KX = Kg−1†Xg† for X ∈ g→ KX ∈ g∗. (4.27)

If G is a matrix group of unitary matricesg† = g−1 we have Ad∗g KX = KAdg X. Using
the Lie bracket ong one may construct a Poisson bracket for functionsf : g∗ → C. The
Poisson bracket is most easily defined for linear functionals. Asg∗∗ ≡ g everyX ∈ g
defines such a linear functional

fX: g∗ → C for X ∈ g
fX(ξ) = (ξ,X) ∈ C for ξ ∈ g∗. (4.28)

For these linear functionals the Poisson bracket is defined by

{fX, fY } = f[X,Y ] . (4.29)

Using the Leibnitz rule one may easily construct the Poisson bracket for all functions on
g∗ that may be written as a series in the linear functionals [31, 32]. There is an action of
the groupG on functionsf : g∗ → C

g ◦ f (ξ) = f (Ad∗
g−1 ξ) (4.30)

and the Poisson bracket is invariant with respect to this action in the sense

g ◦ {f1, f2} = {g ◦ f1, g ◦ f2}. (4.31)

In general, there will be no closed non-degenerate (that is symplectic) 2-form corresponding
to these Poisson brackets. In particular, there might be non-trivial so-called Casimir
functions cν . These Casimir functions have (per definition) a vanishing Poisson bracket
with any other function ong∗. Any function that is invariant under the action of the group

g ◦ cν = cν (4.32)

will be a Casimir function. These invariant functions will be constant on the orbits of the
coadjoint representation (or just coadjoint orbits) which are homogeneous submanifolds of
g∗ (homogeneous here means that any two elements are connected by a group action)

OG(ξ) = {ζ ∈ g∗: ζ = Ad∗g ξ for someg ∈ G} ≡ G ◦ ξ for ξ ∈ g∗. (4.33)

It is possible to restrict the Poisson brackets to functions on these coadjoint orbits and one
may show that for many groups there is a non-degenerate closed 2-form connected to the
Poisson bracket that makes them homogeneous symplectic manifolds.
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Let us now go back toG = SU3. We shall think ofsu3 and su∗3 as the set of all
anti-Hermitian traceless 3× 3 matrices (though we refer to them as the same set we keep
on to distinguish them due to their different Lie structures). These matrices have purely
imaginary eigenvalues and these eigenvalues are invariant under the (co)adjoint action. A
nice way to think of a coadjoint orbit is the subsetOSU3(ξ) ⊂ su∗3 of all matrices with the
same eigenvalues. In particular, there is a diagonal matrixd ∈ OSU3(ξ) in every coadjoint
orbit such that the eigenvalues are ordered

d =
 id11 0 0

0 id22 0
0 0 id33

 such that dii ∈ R d11 > d22 > d33. (4.34)

As d11+ d22+ d33 = 0 we may label each coadjoint orbit by two non-negative numbers

31 = d11− d22 32 = d22− d33 (4.35)

and we shall denote the coadjoint orbit through the matrixd by OSU3[31,32] ≡ SU3d.
We may parametrize coadjoint orbits using the group parametrization of section 2.4 if we
write g[γ ] ◦ d ◦ g[γ ]† for an element of the coadjoint orbit. To make this parametrization
unambiguous we have to divide out isotropy subgroups of the diagonal matrixd (that is the
subgroup of all matricesg ∈ SU3 such thatd = g ◦ d ◦ g†). Instead of reducing the Poisson
brackets fromsu∗3 to the coadjoint orbits we shall identify coadjoint orbits with the orbits
of coherent states and show that the symplectic structure on coherent states now considered
as a submanifold ofsu∗3 coincides with the Poisson brackets onsu∗3. We shall identify the
coadjoint orbitOSU3[31,32] with the orbit of coherent statesOSU3([|µ〉]) ⊂ PH[λ1,λ2] for
31 = h̄λ1,32 = h̄λ2 via the so-called momentum map†
J : OSU3([|µ〉])→ su∗3
[|γ 〉] → J ([|γ 〉])
J ([|γ 〉]) = ih̄

×
 4

3〈γ |H1|γ 〉 + 2
3〈γ |H2|γ 〉 〈γ |S12|γ 〉 〈γ |S13|γ 〉

〈γ |S21|γ 〉 − 2
3〈γ |H1|γ 〉 + 2

3〈γ |H2|γ 〉 〈γ |S23|γ 〉
〈γ |S31|γ 〉 〈γ |S32|γ 〉 − 2

3〈γ |H1|γ 〉 − 4
3〈γ |H2|γ 〉

 .
(4.36)

We shall write

sij = h̄〈γ |Sij − 1
3δijN |γ 〉 = −iJ ([|γ 〉])ij (4.37)

with N = S11+ S22+ S33. For this momentum map we have

J (g[|γ 〉]) = Ad∗g(J ([|γ 〉])) = g ◦ J ([|γ 〉]) ◦ g† ∀g ∈ SU3 (4.38)

andJ ([|µ〉]) = d.
The expectation values isij may now be considered as functions on the coadjoint orbit or

as functions on the orbit of coherent states. We may construct from them eight independent
real linear functionals onsu∗3. We have defined the Poisson brackets onsu∗3 in (4.29)
using such linear functionals (they correspond to elements ofsu3). One may now check
using (4.22) that the Poisson brackets onsu∗3 fit to the symplectic structure on coherent
states obtained by reduction from the canonical symplectic structure of the Hilbert space.
Coadjoint orbits with the symplectic 2-form (4.11) may be considered as classical phase
spaces for Hamiltonian dynamics.

† In general, one defines the momentum map as a linear map from a symplectic manifold to the dual of the Lie
algebra of a group that acts as a Hamiltonian on the symplectic manifold, which is equivariant with respect to the
action of the group on the manifold and the coadjoint action of the group on its dual algebra [32].
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There are two functionally independent Casimir functions onsu∗3 given by

c1 =
3∑

k,l=1

sklslk

c2 =
3∑

k,l,m=1

sklslmsmk.

(4.39)

Using (4.30) we see that they are in fact constant on coadjoint orbits.

4.4. Canonical coordinates on orbits of the coadjoint representation

By Darboux’s theorem we know that every symplectic 2-formω on a manifoldM may be
locally brought to the form

ω|U =
∑
i

dqi ∧ dpi (4.40)

by coordinate transformations. Such canonical coordinates are very useful in explicit
investigations of dynamical systems. We shall give here a set of canonical coordinates
on coadjoint orbits in the form of action-angle variables. First observe that in (4.11) we
have used the generating functionF to define the symplectic 2-form on coherent states (and
via the momentum map on coadjoint orbits). It is easily seen that one may rewrite (4.11)
as

ωSU3 = ih̄
3∑
k=1

dγk ∧ d
∂F
∂γk

. (4.41)

With

ξk = ih̄
∂F
∂γk

k = 1, 2, 3 (4.42)

the symplectic 2-form has the canonical form. However,γ and ξ are complex variables
and it is not trivial to reduce them to real canonical variables as dγk ∧ dξk is not real for
k = 1, 2, 3 (the whole symplectic 2-formωSU3 is real).

A canonical transformation to real coordinates may be found by observing that

I1 = y = 1
3(s11+ s22− 2s33)

I2 = t3 = 1
2(s11− s22)

I3 = t =
√
t23 + s12s21

(4.43)

have vanishing Poisson brackets

{Ii, Ij } = 0 for i, j = 1, 2, 3. (4.44)

These three real functions are the classical counterparts of well known quantum numbers in
elementary particle physics. We shall adopt the language of elementary particle physics and
call y the (classical limit of) hypercharge,t3 the 3-component of isospin andt the (total)
isospin. Expressed in the complex canonical coordinates these functions read

I1 = y = h̄ 1
3(λ1+ 2λ2)+ iγ3ξ3+ iγ2ξ2

I2 = t3 = 1
2h̄λ1+ iγ1ξ1− i 1

2γ2ξ2+ i 1
2γ3ξ3

I3 = t =
√

1
4(h̄λ1− iγ2ξ2+ iγ3ξ3)2+ γ3ξ1ξ2.

(4.45)
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The above equation can be solved forγ in terms ofI andξ†

γ1 = − 1

ξ1

(
ξ1ξ2

2ξ3
+ iI2+

√(
ξ1ξ2

2ξ3

)2

+ i
(

1
3h̄(2λ1+ λ2)− 1

2I1
)ξ1ξ2

ξ3
− I 2

3

)
γ2 = − 1

ξ2

(
ξ1ξ2

2ξ3
+ i
(

1
2I1− 1

3h̄(λ2− λ1)
)

−
√(

ξ1ξ2

2ξ3

)2

+ i
(

1
3h̄(2λ1+ λ2)− 1

2I1
)ξ1ξ2

ξ3
− I 2

3

)
γ3 = 1

ξ3

(
ξ1ξ2

2ξ3
+ i
(

1
3h̄(2λ1+ λ2)− 1

2I1
)

+
√(

ξ1ξ2

2ξ3

)2

+ i
(

1
3h̄(2λ1+ λ2)− 1

2I1
)ξ1ξ2

ξ3
− I 2

3

)
.

(4.46)

The canonical conjugated functions are found with the help of a generating functionS(I, ξ)

such that

γk(I, ξ) = ∂S(I, ξ)

∂ξk
. (4.47)

Such a generating function is given by

S(I, ξ) = −ξ1ξ2

2ξ3
− iI2 logξ1+ i

(
1
3h̄(λ2− λ1)− 1

2I1
)

logξ2+ i
(

1
3h̄(2λ1+ λ2)− 1

2I1
)

logξ3

−
∫

dz
1

z

√
z2+ 2i

(
1
3h̄(2λ1+ λ2)− 1

2I1
)
z− I 2

3

∣∣∣∣
z=ξ1ξ2/2ξ3

= −ξ1ξ2

2ξ3
− iI2 logξ1+ i

(
1
3h̄(λ2− λ1)− 1

2I1
)

logξ2

−
√(

ξ1ξ2

2ξ3

)2

+ i
(

1
3h̄(2λ1+ λ2)− 1

2I1
)ξ1ξ2

ξ3
− I 2

3

+i
(

1
3h̄(2λ1+ λ2)− 1

2I1
)(

1+ logξ3

− log

[
i
(

1
3h̄(2λ1+ λ2)− 1

2I1
)+ ξ1ξ2

2ξ3

+
√(

ξ1ξ2

2ξ3

)2

+ i
(

1
3h̄(2λ1+ λ2)− 1

2I1
)ξ1ξ2

ξ3
− I 2

3

])
−iI3 log

[−I 2
3 + i

(
1
3h̄(2λ1+ λ2)− 1

2I1
)
ξ1ξ2/2ξ3

−iI3

√
(ξ1ξ2/2ξ3)2+ i

(
1
3h̄(2λ1+ λ2)− 1

2I1
)
ξ1ξ2/ξ3− I 2

3

]
×[(ξ1ξ2/ξ3)

((
1
3h̄(2λ1+ λ2)− 1

2I1
)− I3

)]−1
. (4.48)

The canonical conjugate functions are then− ∂S
∂I
(I (ξ, γ ), ξ). These will still not be real

functions ofγ andγ ∗ (the complex structure is defined with respect to these coordinates).

† There is the sign ambiguity in the term
√
(ξ1ξ2/2ξ3)2 + i

( 1
3h̄(2λ1 + λ2)− 1

2I1
)
ξ1ξ2/ξ3 − I2

3 when rewritten in

the variablesγ and ξ . For convenience we have chosen
√
(ξ1ξ2/2ξ3)2 + i

( 1
3h̄(2λ1 + λ2)− 1

2I1
)
ξ1ξ2/ξ3 − I2

3 =
1
2γ3ξ3 − ξ1ξ2/2ξ3 − 1

2 ih̄λ1 − 1
2γ2ξ2.
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As the symplectic 2-form is real we may write it as

ωSU3 =
3∑
k=1

−d
∂S

∂Ik
∧ dIk

=
( 3∑
k=1

−d
∂S

∂Ik
∧ dIk

)∗
=

3∑
k=1

−d

(
Re

∂S

∂Ik

)
∧ dIk (4.49)

and define real conjugated functions by

θk(I, ξ) = −Re
∂S(I, ξ)

∂Ik
. (4.50)

Expressed as functions of the complex canonical coordinatesγ, ξ and as functions of the
non-canonical coordinatesγ, γ ∗ they read explicitly

θ1 = Re

(
i

2
log

ξ2

γ3

)
= i

4
log

[
γ ∗3
(
γ ∗2
(
1+ |γ1|2

)− γ1γ
∗
3

)
γ3
(
γ2
(
1+ |γ1|2

)− γ ∗1 γ3
) ]

θ2 = Re(i log ξ1) = i

2
log

[
λ1f2γ

∗
1 − λ2f1γ2(γ

∗
3 − γ ∗1 γ ∗2 )

λ1f2γ1− λ2f1γ
∗
2 (γ3− γ1γ2)

]
θ3 = Re

(
i log

[
2ξ3

ξ1ξ2
I 2

3 − i
(

1
3h̄(2λ1+ λ2)− 1

2I1
)

+iI3
2ξ3

ξ1ξ2

√(
ξ1ξ2

2ξ3

)2

+ i
(

1
3h̄(2λ1+ λ2)− 1

2I1
)ξ1ξ2

ξ3
− I 2

3

])
.

(4.51)

Canonical variables on coadjoint orbits of theSU3 group are also given in [33, 34].

4.5. The classical limit

We may now perform a classical limit of a quantum-mechanical system defined on an
irreducibleSU3-representation. We shall assume that the HamiltonianH is in the enveloping
algebra ofsu3 and that the coefficients ofH scale withh̄ in such a way that the power of
h̄ is equal to the power of the generators:

H =
3∑

l1,l2=1

a
(1)
l1l2
h̄Sl1l2 +

3∑
l1,l2,l3,l4=1

a
(2)
l1l2l3l4

h̄2Sl1l2Sl3l4 + · · · (4.52)

where the coefficientsa(i) do not depend on ¯h. We may also allow terms which have a
higher power in ¯h than in the generators as these terms will not give any contribution in
the classical limit. Performing the classical limit means of course

h̄→ 0. (4.53)

At the same time the density of states should increase. So at the same time the dimension of
the Hilbert space has to go to infinity. As the dimensiond = 1

2(λ1+1)(λ2+1)(λ1+λ2+2)
depends on two integer numbers there is some choice on the series of irreducible
representations used. The most natural way seems to keep the ratioλ1/λ2 fixed while
both λ1 and λ2 go to infinity. So let nowλ1, λ2 be fixed integers and take a series{[
λ
(n)

1 , λ
(n)

2

]}
n=1,2,3,... of irreducible representations

λ
(n)

1 = nλ1 λ
(n)

2 = nλ2 (4.54)
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where

h̄ = 1

(λ1+ λ2)n

n→∞−→ 0. (4.55)

The definition of a phase space, observables and a symplectic structure follows easily
from the preceding sections. In fact, via the momentum mapJ (4.36) we have already
defined classical observablessij = h̄〈γ |Sij |γ 〉 which are functions on a coadjoint orbit.
The coadjoint orbit associated with an irreducible representation

[
λ
(n)

1 , λ
(n)

2

]
is uniquely

given by the eigenvalues31,2 of the elements of the orbit (4.35). Now the whole series{[
λ
(n)

1 , λ
(n)

2

]}
n=1,2,3,... is associated to one single coadjoint orbit defined by

31 = λ
(n)

1

λ
(n)

1 + λ(n)2

= λ1

λ1+ λ2

32 = λ
(n)

2

λ
(n)

1 + λ(n)2

= λ2

λ1+ λ2
.

(4.56)

This orbit with its symplectic structure is the classical phase space. The dimensionality of
this space depends clearly on31 and32. For degenerate representations the dimension is
equal to four, otherwise the classical phase space is six dimensional. The phase space and
the observablessij have a clear meaning without performing the classical limit ¯h→ 0 and in
fact they do not even depend on ¯h in this limit i.e. there are no corrections to the symplectic
structure and to the linear classical observablessij when h̄ is finite. What remains is the
classical limit of the dynamical equations. Thus we shall look at Heisenberg’s equation and
take its expectation value in coherent states〈

γ

∣∣∣∣ d

dt
Sij (t)

∣∣∣∣γ 〉 = i

h̄
〈γ |[H, Sij (t)]|γ 〉 (4.57)

where

Sij (t) = U(t) Sij U(t)† (4.58)

andU(t) is the unitary time-evolution operator. Taking expectation values in coherent states
here does not mean that we make any assumption on the state of the system. Just in the
spirit of the momentum map used before (4.36) this is a way to construct a function on the
phase space (γ is a coordinate on the coadjoint orbit). After multiplication of (4.57) with
h̄ both sides stay finite in the limit ¯h→ 0 and we shall show that one obtains Hamilton’s
equations in the classical limit

d

dt
sij (t) = {h, sij (t)} (4.59)

with a Hamilton function

h = lim
h̄→0
〈γ |H |γ 〉

=
3∑

l1,l2=1

a
(1)
l1l2
sl1l2 +

3∑
l1,l2,l3,l4=1

a
(2)
l1l2l3l4

sl1l2sl3l4 + · · · (4.60)

(compare with (4.52)). Let us first show that the limit in the first line of (4.60) indeed gives
the last line. This may be reduced to showing

〈γ |h̄Sij h̄Skl|γ 〉 = sij skl + h̄∂klsij → sij skl for h̄→ 0 (4.61)

where∂kl is a differential operator which may be obtained from (3.16). Thus expectation
values in coherent states factorize in the classical limit and our definition of the Hamilton
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functionh (4.60) is correct. This factorization property may now be used to show that the
commutator on the right-hand side of (4.57) in the classical limit gives the Poisson bracket
in (4.59)

i

h̄
〈γ |[h̄Sij h̄Skl, h̄Srs ]|γ 〉 = i

h̄
(〈γ |h̄Sij [h̄Skl, h̄Srs ]|γ 〉 + 〈γ |[h̄Sij , h̄Smn]h̄Skl|γ 〉)

h̄→0−→ sij {skl, smn} + {sij , smn}skl = {sij skl, smn}. (4.62)

In the equation above the factorization property and (4.22) are used. In the Heisenberg
equation (4.57) we have used linear observablesSij (t)—there is however no difficulty in
generalizing this to productsSijSkl (and to products of higher order).

We have not assumed anything about the state of the system in the classical limit we
have defined above and indeed the limit we presented does only depend on the state of
the system through initial conditions which have to be chosen appropriately. It is a very
interesting question what has to be assumed for the state of the system in order to have a
well defined classical limit for quantities

σij (t) = h̄〈9|Sij (t)|9〉 (4.63)

where |9〉 is the state vector of the system (to define a classical limit we have to choose
a series

{∣∣9(n)
〉}

of states in some ‘natural way’—each state being in a different Hilbert
space). If we take a coherent state

∣∣9(n)
〉 = |γ ′〉 (γ ′ is here a constant and not a free

variable as in the definition of the functionssij ) one may show that the dynamics ofσij in
the limit h̄→ 0 is equivalent to the classical limit defined above (any series of states with
the factorization property

〈
9(n)

∣∣h̄Sij h̄Skl∣∣9(n)
〉 n→∞−→ σijσkl will have a well defined classical

limit equivalent to (4.59)).
More generally one can define a sequence of statistical operators

{
ρ(n)

}
such that the

Q-function

Q(γ ) := dimH[λ1,λ2]
〈
γ
∣∣ρ(n)∣∣γ 〉 (4.64)

is constant. ThenQ(γ ) is a well defined probability distribution on the phase space and
σij (t) are the time-dependent mean values of the observablessij (t)

σij (t) =
∫

d2γ1 d2γ2 d2γ3

f 2
1 f

2
2

Q(γ ) sij (t, γ ). (4.65)

5. Conclusions

In the paper we presented an explicit construction of the coherent states for theSU3 group.
We derived the relevant formulae for the expectation values of theGL3(C) generators. We
also gave explicitly the symplectic structure on the manifolds of coherent states, which is
important in derivation and investigation of the classical limit of various quantum systems
with SU3 symmetry. In our investigations we gave the results valid for an arbitrary
representation of theSU3 group, in contrast to various previous studies concerned mostly
with some special representations in the context of nuclear shell models [35–38], atomic
physics [23] and quantum mechanics of integrable spins [39].
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